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Ideal Gas - Real Gas
using DERIVE

(Johann Zschling, Berndorf, Austria)

1. Introduction

Thermodynamics lessons usually bore the pupils aged from 15 to 16. The introduc-
tion of experimental equipments for students has been raising their interest in some
fields of thermodynamics, e.g. special heat capacity of metals or alloys, thermal con-
ductivity, radiation heat transfer.....

Due to the lack of money, but mainly because of the risk of breaking glass, experi-
ments concerning the dynamics of a gas are restricted to the teacher. Pupils used to
doing experiments on their own are normally uninterested in watching experiments
done by their teacher. Therefore we tried last year to do some experiments concer-
ning gas dynamics with "computer algebra”, especially with DERIVE.

The two most important aims were:

a) the visualization of the ideal gas equation of state

b) to expand the equation of ideal gases to an equation of real gases

The didactic aims were:

a) to give a deeper insight into what is happening in gases.
b) to train the pupils to model physical equations.
c) to show the efficiency and the limits of physical models.

the organization of work:

Because of the small number of pupils in class ( only 14 ), we had no problems of
organization.

Each pupil was working alone with a copy of DERIVE.

Results of calculations and plots were printed and glued down in the exercise books.
The time needed to complete the work was about 2 weeks

(3 lessons a week).
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2. The visualization of the ideal gas equation of state
2.1) Theoretical preparatory work

We developed with the help of simple classical mechanics (momentum conservation,
Boltzmann’s equipartition principle of energy) a pressure - volume - temperature
relationship of an ideal gas. We also introduced Avogadro’s number and defined the
quantity mole.

We used 3 versions of the ideal gas equation of state:

a) pV = NkT
b) pV =nRT
¢) pVm =RT

..pressure _
....enclosed volume of the gas
...absolute temperature
...Boltzmann’s constant
...1deal gas constant
...number of moles

..volume per mole

]PEFA<T

The pupils also learned the well known relationships

of Boyle-Mariotte d) pV = const
of Gay-Lussac e) V=constT
and of Jaques Charles f) p = constT.

They drew the usual plots (isotherms,isobars,isochors) and calculated some pro-
blems.

After a few lessons during a short examination one pupil said:

"There are four ideal gas equations of state; a big one (a,b,c), which is more or
less useless and 3 small ones (d,e,f). With the small ones we can solve most of our
problems. The small ones are also nice and easy to draw”

The connection between (a,b,c) and (d,e,f) was completely lost.
With the help of DERIVE we tried to recover this connection. We tried to draw the
”big one” and to find the "small ones” in this plot.
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2.2 Working with DERIVE

First we plotted some functions like z = f(x,y) defined in a closed rectangle region
of the xy-plane —a < r < +a,

bzw.—b < y < +b. Because of the variation of the grid the pupils knew very well
the inaccuracy of the plot.

Example:
_ 1
e +y*+2
—53<z<5,-5<y<5
DERIVE:
AUTHOR: z =1/(z® + y* + 2)
PLOT

LENGTH z:10 y:10 2:10
GRIDS 2:10,5,50 y:10,5,50
PLOT

COMMAND: JJPTITY] Center Eye Focal Grids Hide Length Options Plot Quit Windou COMMAND ! Algebra Center Eye Focal Grids Hide Length Options Plot Quit Uindow
Zaom Zaoow

Enter option Plotting bottom of expression {
Center x:0 y:8 Length x:18 y:18 Derive 3D-plot Center x:8 y:8 Length x:16 y:18 Derive 3D-plat

Fig. 2.1 »= ’xz—ﬂl,m (10210 grid) Fig. 2.2: z = m (50250 grid)
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The ideal gas equation of state

DERIVE:

AUTHOR: pv =rt
DECLARE: variable: r, value: 1
SOLVE: Nr.1, variable p
PLOT

LENGTH: 10,10,10
CENTER: 5,5,0

GRIDS : 20,20 - 50,50

EYE : 25,20,15

PLOT

COMMAND: Algebra Center Eye Focal Grids Hide Length Options Plot Quit Windou

Zoon
Plotting battom of expression 2

Center x:5 y:5 Length x:16

Derive 3D-plot

Fig. 2.3: p=t/v (GRIDS:50,50 , EYE:25,25,15)

DERIVE’s graphics screen shows a wire frame model of the equation of state. The
X-axis 1s equivalent to the temperature, the y-axis to the volume and the z-axis to
the pressure. Each point on this surface shows a definite state of p-V-T of the ideal

gas.

216



Several times we change the point of view now to get a better impression of the
shape of the function.

We are following the x-axis:

DERIVE :
EYE: 25,0,5 - 25,5,6
PLOT

COMMAND : JTEITE] Center Eye Focal Grids Hide Length Options Plot Quit Window
Zoon

Enter option

Center x:5 y:5 Length x:10 y:10 Derive 3D-plot

Fig. 2.4 p=t/v (GRIDS:50,50 , EYE:25,5,5)

The graph of the function looks like a carpet which is lifted upward near the tem-
perature axis (very small volume !!), denoting high values of pressure in this region.

If we follow the x-axis exactly, we can see the bottom of the function. With increasing
temperature the carpet is lifted upward, probably linearly.
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DERIVE:
EYE: 25,0,0
PLOT
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Again we change the point of view. We are following the y-axis now :

Fig. 2.5: p=t/v (GRIDS:50,50 , EYE:25,0,0)

DERIVE:
EYE:0,25,0
PLOT
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It’s also possible to choose other values for "EYE”, e.g.( 3,25,0 )etc,

COMMAND: Algebra Center Eye Focal Grids Hide Length Options Plot Quit Windou
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c¢) Moving along a gridline parallel to the volume axis ( constant temperature !),

b) Moving along a gridline parallel to the temperature axis ( constant volume !),
pressure is increasing in a nonlinear way.

a) Each relationship between pressure, volume and temperature is characterized by
pressure is increasing linearly.

What can we learn from the plot of the ideal gas equation of state ¢
a point on the surface of the function.

With increasing temperature the function gets really linear.

Fig. 2.6: p=t/v (GRIDS:50,50 , EYE:0,25,0)
This behaviour reminds us of the isochors.
This behaviour reminds us of the isotherms.

summary
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Where are the isotherms and isochors on the pVT-surface ?

First of all we draw a new pVT-surface based on a rectangular grid.
DERIVE:

GRIDS: 10,20

We project the gridlines of constant temperature on the y-z-plane.
We define a vector: {1/v,2/v,3/v,4/v,5/v,6/v,7/v,8/v,9/v,10/v]

and split the screen into three windows.

window 1: text:”vector”

window 2: 3-D-plot

window 3: 2-D-plot

The plot of window 3 shows the wellknown isotherms.

COMMAND : JITITR) Center Delete Help Move Options Plot Quit Scale Ticks Windou
Zaon

Enter option

Cross x:4.8194 y:1.5 Scale x:1 y:2 Derive 2D-plat

Fig. 2.7: 3-D-Plot:p  t/v 2-D-Plot of the isotherms
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In the same way we receive the isochors:
We plot a pVT-surface with a grid of (10x5) and project the gridlines parallel to the
x-axis on the x-z-plane. We again define a vector [t,t/2,t/3,t/4,t/5] for the projection.

B

COMMAND : Build Calculus Declare Expand Factor Help Jump soLve Manage
Options Plot Quit Remove Simplify Transfer moVe Window appraX

Enter aption
User Free:78~ Derive Algebra

Fig. 2.8: 3-D-plot:p = t/v 2-D-plot of the isochors
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3. An “equation” for real gases
3.1 theoretical consideration

As the term suggests, an ideal gas is an idealized model, which represents the beha-
viour of gases very well in some circumstances, less well in others. We made some
simplifications:

a) the volume of the molecules is negligibly small.

b) there are no interactions between the molecules.

We are trying to correct our ideal gas equation, taking into account the volume of
the molecules as well as the interactions.

The volume of a molecule is to be v, the sum of the volumes of all molecules is to
be b. Therefore the free volume for all particles is reduced to (V,, — b). We correct
our equation of state:

p(Vm - b) = RT

Next we take into account the interactions between the molecules.

The pressure of a gas exerted on the walls of the container will be reduced due to
the attractive force of the molecules. Therefore we are measuring a pressure lower
than the real pressure in the gas. We again correct our equation of state:

(p+p) (Ve — b) = RT
What can be said about p’ ?

The potential energy of the interaction between two molecules is to be E (r).

/7

-

The total potential energy exerted on one molecule is :

N-1
Esum = Z E(T‘,’)

i=1
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We don’t know any value of E,,,,. All we know is a direct proportion between FE,,n,
and the number density of the gas %f-

Ein = %K (K...constant)

Taking into account the interactions between all molecules and counting interactions
between two molecules only once
(factor 1), we receive for the sum of the energy:

_1N(WN-1) N?
Bom =5 =K ~ - K

Therefore the attractive forces of the molecules change the energy of the gas. Chan-
ging the energy results in a change of pressure.

_E
P=y

the pressure correction term p’ is then:

/ N 2 K 1
using moles:

nNA =N

n...number of moles-
N,4..Avogadro’s/Loschmidt’s-constant

we can write:

!

_a
v
Our new, refined equation of state is then:

a
Vin?
What can we do with this equation ?

(P+ ) (Vm —b) = RT

(comment: Using DERIVE we write V instead of V,, )

Let’s now investigate the behaviour of the new equation.
We restrict ourselves to the 2-D-plots of the isotherms.
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3.2 Working with DERIVE

As we are only interested in the qualitative behaviour of our equation, we choose
arbitrary values for the constants a and b.
a=1, b=0.1

DERIVE

AUTHOR:(p + a/v?)(v — b) = rt
DECLARE: variable: a, value 1
DECLARE: variable: b, value 0.1
DECLARE: variable: r, value 1
SOLVE: Nr.1, variable p
EXPAND: ”all”

now we choose different values for t and plot the isotherms:
DERIVE

DECLARE: variable: t, value 10,15,5,2.5

PLOT

COMMAND : YTEITR) Center Delete Help Move Options Plot Quit Scale Ticks Window
Zaon

Enter option

Cross x:9 y:2 Scale x:1 yil Derive 2D-plat

Fig.3.1: isotherms for t=10,15,5,2.5
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For t=10, 15 respectively 5 we receive isotherms, similar to those of the ideal gas.
The isotherm of t=2.5 is completely different from the well known isotherms of the
ideal gas.

Using a vector we plot now the isotherms in the ”critical region ” between t=2.5
und t=>5.

With the help of the ZOOM option we magnify the critical region. ( Fig.3.2,3.3)

DERIVE

DECLARE: function: pr , value: % — v%
AUTHOR: [pr(2.5,v),pr(.......]

PLOT

We plot again the isotherms using different scaling for the y-axis.
(e.g. SCALE y:5).(Fig.3.4)

COMMAND : Center Delete Help Move Options Plot Quit Scale Ticks Window
Zoon

Enter option

Crass x:-8.5486 y:2.8392 Scale x:8.5 y:l Derive 2D-plot

Fig. 3.2: isotherms (interval (t=2.5 , 3.3), step 0.1)
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COMMAND: JPTITH) Center Delete Help Move Options Plot Quit Scale Ticks Window

Zoon
Enter option
Cross x:1.,7898 y:2.8392 Scale x:8.2 y:1 Derive ZD-plot

Fig. 3.3: Fig. 3.2 , using ZOOM option

COMMAND : JJITITY Center Delete Help Move Options Plot Quit Scale Ticks Windouw
Zoon

Enter option

Cross x:-8.5138 y:7.9464 Scale x:0.5 y:5 Derive ZD-plot

Fig. 3.4: Fig. 3.2 , different scaling of the y-axis (pressure)
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physical interpretation of the plots

Fig. 3.4 shows a rapid rise in pressure in the left part of the isotherms. This means
that any further decrease in volume is nearly impossible. We call this state ”incom-
pressible” or the "liquid state”.

The maxima and minima of the isotherms are useless in our physical model. In this
region our equation does not describe what is going on in the gas.

The isotherm with the horizontal tangent is a very special one, we call it "critical
isotherm” (" critical temperature”).

Below the critical temperature the gas starts to condense from the vapor to the
liquid phase. At temperatures greater than the critical temperature, no phase tran-
sition occurs as the material is compressed. With increasing temperature our real
gas gets closer and closer to the ideal gas. (Fig. 3.5)

CONMAND : Center Delete Help Move Options Plot Quit Scale Ticks Window
Zoom

Enter aption

Cross »:4.37% y:3, 1871 Scale »'H.5 yil Derive 20-plot

Fig. 3.5: isotherms of the real respectively ideal gas
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4, Conclusions

We played the whole game only once, therefore it’s too early to give you a complete
report of experience.

There were no problems using DERIVE. The pupils did not even need the manual.
All they need was one hour of training of the basic functions of DERIVE.

I think that their understanding of physics has been improved, but I’m not quite
sure. Using DERIVE in the following years will show the improvements.

But doing gas dynamics in this way showed two clear results:

a) Most of the pupils had great fun doing gas dynamics.
b) The pupils asked more questions than the teacher.

In this sense, gas dynamics done with the help of DERIVE

was a success.
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